
Page 1

Husky Rose

An Entry from Rose-Hulman Institute of Technology in the

2012 Intelligent Ground Vehicle Competition

(IGVC 2012)

Tayler Burns, Kyle Green, Vismay Modi, Zhihao Ni,

Cameron Spry and Jiaren Wu

Faculty Advisor:

David Mutchler, Professor of Computer Science and Software Engineering

Faculty statement: I hereby certify that the design and development of the robot discussed in

this technical report has involved significant contributions by the aforementioned team

members, consistent with the effort required in a Senior Design course.

David Mutchler, Professor of Computer Science and Software Engineering

Page 2

Table of Contents
Table of Contents ... 2
1 Team Overview ... 3
2 Design Process .. 3
3 Hardware .. 4

3.1 The Husky Robot from Clearpath Robotics ... 4

3.2 Hardware We Added to the Basic Husky Robot ... 4

3.3 Hardware Innovation .. 5

3.4 Costs of Equipment ... 5

4 Software .. 5

4.1 Platform – Robot Operating System (ROS) ... 5

4.2 Vision ... 7

4.2.1 Vision for Lane Following (staying within the white lines) ... 7

4.2.2 Vision for detecting barrels ... 9

4.2.3 Vision for Obstacle Detection ... 10

4.3 LIDAR ... 12

4.4 GPS .. 12

4.5 Navigation ... 12

4.6 Software Innovation .. 14

5 Performance analysis / testing ... 15
6 Conclusion ... 15
7 References .. 16

Note: The outline of this report was taken from the Princeton entry in the 2008 IGVC [1]. We

are grateful for their example of an award-winning design report.

Page 3

1 Team Overview

The Husky Rose team is organized via a new course offered this year at Rose-Hulman: CSSE

290 Software Challenges in Autonomous Vehicle Navigation. Twenty-five students took the

course over 3 terms, for a total of student 50 credit-hours over the year. Six students are in the

course for the spring term and authored this report.

This is our first year in

IGVC. We are still

implementing our

ideas. We will update

this design report at

the oral presentation

at the IGVC contest.

2 Design Process

In the fall term, we were starting from scratch. We knew some of the challenges and knew

that we wanted to use the Robot Operating System (ROS) [2] platform developed by Willow

Garage [3]. We spent the term becoming familiar with ROS and the challenges.

In the winter term, we chose our robot: A Husky A200 [4] that we bought from Clearpath

Robotics [5]. Our work narrowed to more specific tasks, but we were still very much in

“learning mode.”

In this problem-based course, students design and develop software to solve
challenges in navigation faced by autonomous vehicles (robots). The problems are
real problems faced by real robots in a real competition. The software to be
developed is for challenges faced by a robot that will be entered in the 2012 Ground
Vehicles Competition (IGVC), although the software will be designed to appl
Intelligent y to other robots as well. Challenges include location, vision, planning and
control:

• Where am I, and where will I be in X seconds?

• What obstacles are ahead of me?

• What sensors should I use to learn the above? How do I deal with uncertain and
conflicting information?

• How will I avoid the obstacles ahead of me? Where do I want to go next?

• At each step, what speed should I be driving, to accomplish my overall goal of
winning the competition? What sub-goals should I set to accomplish that overall
goal?

• What commands do I give to motors to accomplish what I want to do next?

• What information do I need from sensors to accomplish what I want to do next?

Figure 1. A portion of the course description of CSSE 290 Software Challenges in
Autonomous Vehicle Navigation, Rose-Hulman Institute of Technology.

Page 4

In the spring term, we used a

simplified version of the Agile [6]

software development process called

Scrum [7] in which we set out

deliverables due each week and re-

planned each week based on what we

did (and did not) accomplish. The

diagram to the right summarizes the

Scrum development process.

3 Hardware

3.1 The Husky Robot from Clearpath Robotics

Our team wanted to focus on software challenges, per the course driving the team. For that

reason, we bought a Husky A200 robot from Clearpath Robotics that provided a very strong,

solid base – but only the base: wheels, motors, chassis, battery etc. No sensors and no brain.

• Dimensions: About 3 feet long, 2 feet wide, 15 inches tall, with a 5 inch clearance. It

weighs about 100 pounds.

• Speed: It runs in rugged terrain (snow, etc) quite nicely, with a max speed of about 2.3

mph. It turns in a tight radius with a wheel base of about 2 feet.

• Power: Battery powered. It runs for several hours on a charge.

More details of the robot are at http://www.clearpathrobotics.com/husky.

3.2 Hardware We Added to the Basic Husky Robot

• A mounting system made from 80/20 aluminum t-slotted tube framing [8].

• Four cameras (mounted front and sides): Logitech HD Pro Webcam C920 [9].

• LIDAR: A used LIDAR loaned to use from an alumni.

• GPS: A BU-353-S4 Weather-proof USB GPS Receiver by GlobalSat [10].

Figure 2. The Scrum development process [15]

http://www.clearpathrobotics.com/husky

Page 5

• Computer: HP/Compaq Tablet computer, model TC 4400 (several years old).

• Safety system as required for IGVC.

Additionally, we are considering adding an electronic compass for heading information.

3.3 Hardware Innovation

We believe that the following will prove to be innovative about our hardware design: An

off-the-shelf robot to provide stable, reliable locomotion, thus letting us focus on software

challenges. Multiple cameras used for multiple purposes.

3.4 Costs of Equipment

Item Retail cost Cost to team

Husky A200 robot, with 1 extra battery (shipped, with tax) $ 14,700 $ 7,600

Cameras (4) – Logitech HD Pro Webcam C920 $ 310 $ 310

LIDAR – SICK LMS291-S14 $ 5,000 $ 0

GPS – BU-354-S4 Weather-proof USB GPS Receiver. $ 50 $ 60

Computer (HP/Compaq Tablet computer, model TC 4400) $ 2,500 $ 0

Mounting hardware $ 500 $ 100

Safety system (light, remote control, etc) $ 800 $ 400

TOTAL $ 23,860 $ 8,470

4 Software

This section describes the software we developed for our robot. Our development is still in

progress – we will give a more complete report at the oral presentation at the contest.

4.1 Platform – Robot Operating System (ROS)

The software platform chosen for use on our robot is Robot Operating System (ROS) [2], an

open source software framework for use with robotics. It is a mostly self-contained system,

which according to the ROS Wiki, provides “the services you would expect from an operating

Page 6

system, including hardware abstraction, low-level device control, implementation of

commonly-used functionality, message-passing between processes, and package management.

[2]” More simply put, it is similar to an operating system (although it has to run on a host OS;

Ubuntu Linux is the only one officially supported), and uses a message-passing graph

architecture to facilitate communication between various inputs, processing nodes, and

outputs.

A more detailed overview of ROS is as follows (most of this is summarized from the ROS

concepts page [11] located on the ROS Wiki): ROS has three layers of concepts and

functionality: Filesystem Level, ROS Graph, and Community.

The most important parts of the Filesystem Level are Packages and Stacks. Packages are

large units that may contain ROS nodes, ROS libraries, ROS configuration, or anything else that

needs to go together. Stacks are collections of related packages. An example would be the

Clearpath Husky stack; it contains packages for Husky initialization, Husky remote

teleoperation, and Husky simulation.

The Graph Level of ROS is where most of the work is done. The graph level consists of

nodes: modular processes that, like Unix processes (and that similarly adhere to the philosophy

“do one thing, and do it well”), typically do one specific task (control GPS, transform coordinate

frames, control LIDAR, etc). Nodes communicate to each other by sending messages to each

other over a routing system that utilizes named

topics. Nodes can either publish messages to a

specific topic or subscribe to a topic, receiving (and

handling) any messages that are published to it.

Nodes may publish and subscribe to several

different topics. There are also services, which

allow for synchronous communication

(request/reply), but these are used relatively infrequently. “Bags” are another useful part of

the Graph Level of ROS. They are a format for saving and replaying ROS message data, allowing

one to work on algorithms without having to collect new data each time.

The third level of ROS is the Community level, which consists of the online distributions and

repositories of ROS. Our Husky robot is currently running the 4th version of ROS, Electric Emys.

Figure 3. The ROS message-passing structure
(from [11])

Page 7

We chose ROS due to the large amount of available software for it, the large amount of

compatibility, and its ease of development, due to being open-source. Our

production/deployment system is running on Ubuntu 11.10, and our development systems are

all running either Ubuntu 11.10 or Ubuntu 12.04. ROS supports code written in Python and in

C++. Most of our high-level code is currently written in Python, with calls to libraries

implemented in C++.

4.2 Vision

4.2.1 Vision for Lane Following (staying within the white lines)

The lane following algorithm implemented by our Python code is deceptively elegant. We

chose to use the open source vision library OpenCV [12] because it is built into ROS and

because, being freshman, it was a good way to be introduced to image processing.

An image read by OpenCV is stored as a two-dimensional array of pixels, where each pixel is

a 3-tuple (e.g. the red/green/blue characteristics of the pixel). We realized early on that our

system needed to process only a portion of each image, mainly just the ground. This revelation

led to a crop method in our code. When an image is read into our code, the first process it goes

through is the crop method which cuts off the entire top portion and leaves only the robot’s

immediate line of vision. The crop is accomplished by a call to an OpenCV function that restricts

the field of interest (FOI) to the fixed area of the image that is the ground. (We know that area

because we know how the camera is mounted, in particular, the angle at which it points toward

the ground.)

While working on the crop method, we had also been thinking about a way to detect lines.

Several options presented themselves to us. Since the lines would be white, we attempted to

use a flood-fill operation and highlight everything white in the image. This process was

eventually ruled out due to the severely discordant behavior of the operation. The flood-fill

colored in not only the white lines, but every single white pixel in the image. Realizing that a

more complex process would be needed, our team began to develop new ways to detect the

while lines. Trawling through OpenCV’s documentation and through code for prior projects, we

did not leave empty handed. We realized that we needed to use the Hough Transform in order

to draw lines onto the image. Though the Hough function can find straight lines in an image, it

Page 8

would not be enough to implement it directly. After several weeks of

experimentation, we came up with our current method to process the

image for the Hough transform:

1. Crop the image to get just the ground

(no sky).

2. The cropped image is sent to an

OpenCV function that converts colored images to grayscale. A purely

black and white image gets rid of many issues and inconsistencies.

3. The gray image is then thresholded for white colors. The method of

black and white thresholding turns every single pixel above a given

value (in the range 0-255) to white and every pixel below the value

to black. At first we used a fixed value as the threshold, but later

we used an adaptive algorithm to choose the thresholding constant (see discussion below).

4. The preceding steps gave us an image where the lines were clearly

defined as collections of pure white pixels, but it did not take into

account that there are many random appearances of white still all

over the picture. In order to detect the white lines properly, we

needed to reduce the effects of the stray occurrences of white. A simple way to reduce the

effects was to apply a blur to the image. We did not comprehend at the time that the blur

would perform multiple functions. It would reduce the effects of stray white spots around

the picture, and it would allow the Canny Edge Detection method to work more effectively.

5. The Canny Edge Detection method is a built-in OpenCV method that extracts the edges

from a 2-d image. An edge can be defined as an inherent surface marking in the image that

reflects the geometry of the shapes, or a sharp change in color. Therefore, the Canny Edge

Detector is able to see the sharp contrast between the white lines and the rest of the black

areas in the image. It would seem like edges would be easy to detect using Canny,

however, the thresholding algorithm doesn’t isolate the line as a single object; instead, the

line becomes a heavily concentrated collection of white pixels. Therefore, Canny cannot

identify a single solid edge, but it detects the line as a jagged edge with many fractures and

Page 9

intervals of blank black space. The coordinates for each pixel in the edge are recorded in the

image.

6. The Cannied image is finally sent to the Hough Transform

method. This finds straight lines of a pre-set length in an

image. The value returned by the Hough method is an array of

lines defined by two points on the original image. We took the returned array from Hough

lines and iterated through it, simultaneously drawing each line onto the original image. The

result was the original cropped image with red computer generated lines along the white

painted grass. These lines are then sent to ROS to use in its navigation algorithms, as

described later in this document.

At this point we thought that our line following algorithm was done and we could focus on

other aspects of the project, but we were wrong. In attempts to test our line following

algorithm on other test pictures, we found that our threshold did not work for images with

differing values of brightness. As the overall value of brightness in the image changed, our

value to threshold needed to be changed also. Therefore, our adaptive thresholding method

was instated to perform that operation.

In order to find the value of brightness to threshold for in a given image, we had to find the

overall brightness of the image. The OpenCV function calcHistogram was used to find the

number of pixels at each level of brightness from 0 to 255 in the grayscale image. Based on the

skew of the histogram, we could threshold for only the brightest values (which would be

coming from white lines). Our thresholding operation iterates through the histogram to find

the value of brightness with the largest number of corresponding pixels. It then iterates

through the rest of the histogram until it reaches a brightness at which there only about a sixth

of those pixels. That value of brightness is recorded as the threshold value.

4.2.2 Vision for detecting barrels

For our barrel detection system we were unsure of how to effectively isolate and record the

positions of the barrels from the camera. The main reason for this was that the barrels can be

any color, from orange to green. As a result, we decided to break our algorithm development

process into several phases. The first phase was to find the barrels based on their orange and

white alternating colors. We do this by stepping from the bottom row of the image up to the

Page 10

top, row by row. We then look for a block of orange pixels in the row. Once this is found, we

step upwards; looking for a block of white pixels above. Once this is found, we can safely say

that we have found a barrel and can return its coordinates.

The second phase was to find an algorithm to isolate a barrel based somewhat on color and

mostly on shape. This way we can operate on any barrel regardless of color. The algorithm we

are using for this is the Histogram of Oriented Gradients algorithm, or HOG [13]. The HOG

algorithm is commonly used to detect pedestrians in crosswalks. It can successfully find people

regardless of the color of their clothes. This algorithm shows much promise for identifying any

and all barrels from the camera. We are in the process of

implementing and applying HOG to finding barrels; we will report

more on this in the oral presentation at the contest.

4.2.3 Vision for Obstacle Detection

We detect obstacles, including their distance from the robot,

using a vision algorithm that J.P. Mellor, Professor of Computer

Science and Software Engineering, taught us. The algorithm

works using a single camera, mounted pointing straight away and

somewhat toward the ground, that takes pictures over time.

The algorithm:

Start with a blank “stack graph” image

and repeat the following every 10 milliseconds:

1. Capture one line of pixels from the camera (Figure 4.) While

any line could work, we chose a line to have accurate distance

information for barrels when they get within about 20 feet.

2. Append the new line to the bottom of the stack graph image

(Figure 5). Thus, as this loop continues over time, the stack

graph image shows the same line of pixels repeated over time,

with time being the y-axis.

3. Apply the OpenCV Canny function (as described earlier) with

appropriate thresholds to get edges of the objects (Figure 6).

This line of pixels

Figure 4. Capture one line of pixels

Figure 5. Append lines to the
bottom of the stack graph image

Figure 6. Threshold to grayscale

Stacks from the
bottom, over time

Page 11

4. In the thresholded image, the lines are edges of objects. Lines that are near vertical are for

objects whose edges are not changing over time – those are objects that are far away. Lines

that are not near vertical are for objects whose edges are changing over time – those are

objects that are close. The smaller the slope of the line, the closer the object. In particular,

the distance of the object whose edges are lines in the stack graph image is given by the

formula (where we use the slopes near the bottom of the stack graph image):

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑘 ∗ 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑖𝑡𝑠 𝑙𝑖𝑛𝑒𝑠 ∗ 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡

Why the algorithm works: Here is an example to illustrate the algorithm. In this example,

the camera is moving toward the black object held in my hand, thus simulating the robot with

its camera moving toward the black object. The images on the left are snapshots over time of

the actual image; the images on the right are the stack graph images developed over time.

The line of pixels to be sampled
repeatedly over time.

The black object that the
camera will move toward. At first, nothing is moving, so all the

lines are vertical. The lines are
from:
• The window
• The black cord next to the

window
• The left and right edges of the

black object in my hand

Now the camera has moved closer
to the black object in my hand.
• The far-away objects have not

changed much in the images
sampled over time, so their lines
remain near vertical.

• The lines for the black object
start to change their slopes
toward horizontal, indicating
that the black object is closer.

Now the camera has moved even closer
to the black object in my hand.
• The far-away objects still have not

changed much in the images sampled
over time, so their lines remain near
vertical.

• The lines for the black object are even
more toward horizontal, indicating
that the black object is still closer.

Page 12

4.3 LIDAR

Although we have a LIDAR mounted on the robot and we know that ROS can handle LIDAR

data, we have not yet written code to take advantage of that. We hope that our vision

algorithm for detecting distances of objects will suffice; eventually we want to use that vision

algorithm along with LIDAR data to increase reliability of our distance sensing.

4.4 GPS

We have written code that takes in GPS data. The next section shows how that data will be

used for navigating to waypoints.

4.5 Navigation

For navigation functionality, the ROS Navigation Stack is used. It contains a variety of

components that work together with other nodes as part of a larger system. The simplest

explanation of it is that it takes sensor data and localization data, then signals the robot's

control surfaces to take it to a given destination.

Figure 7. ROS Navigation Stack Layout

A more complex explanation of the ROS Navigation stack is as follows: The navigation stack

is a series of nodes that work together to give the robot navigation functionality. The internals

of the navigation stack consist of a global costmap, a local costmap, a global planner, a local

planner, and a recovery behaviors node.

Page 13

Costmaps are the primary way by the robot

knows where it can and cannot go, and what paths

are best to take. They are built by taking in sensor

data (whether from a laser scan [usually output by

LIDAR] or point cloud) and using this to produce an

occupancy grid (a 2D or 3D grid of places the robot

can and cannot go). The “cost” part of the costmap

is that each grid space has a “cost” associated with

it. The robot avoids spaces with high cost

(corresponding to high probability of collision), and

prefers to go through spaces with low cost

(corresponding to low or no probability of

collision). These are calculated by giving the robot

an “inscribed radius” (corresponding to a circle drawn inside the robot's body) and a

“circumscribed radius” (corresponding to a circle drawn outside the robot's body). Obstacles

that would fall within the robot's inscribed radius have a very high cost, while obstacles that fall

within the robot's circumscribed radius have a slightly lower cost, and obstacles that fall within

neither have practically no cost. The use of costmaps allows the ROS navigation stack to deal

with many types of obstacles in an elegant manner.

The second part of the navigation stack is the planner nodes. These use the costmap to

attempt to find the “cheapest” route from the robot to a specified goal. After such a route is

found, it sends differential and angular velocities to the robot. The algorithm used by the

planner node is as follows (quoted from [14]):

1. Discretely sample in the robot's control space (dx, dy, dtheta)

2. For each sampled velocity, perform forward simulation from the robot's current state to

predict what would happen if the sampled velocity were applied for some (short) period of

time.

3. Evaluate (score) each trajectory resulting from the forward simulation, using a metric that

incorporates characteristics such as: proximity to obstacles, proximity to the goal, proximity

to the global path, and speed. Discard illegal trajectories (those that collide with obstacles).

4. Pick the highest-scoring trajectory and send the associated velocity to the mobile base.

Figure 8. A Costmap Visualization

Page 14

5. Rinse and repeat.

Finally, the recovery node rotates the robot 360 degrees when the robot appears to be “stuck”.

To make the navigation stack functional, a few things are required: sensor inputs, robot

controller output, odometry inputs, and a map server (for sharing the map with other nodes, as

well as saving it to the disk). For sensor inputs, we are using a SICK LIDAR system mounted to

the front of the robot, as well as a mounted camera. For odometry, the robot has an NMEA-

compatible GPS device, as well as encoders on the wheels. Given these various sources of input,

some are combined by using an EKF filter, and they are sent to the navigation stack, enabling

navigation. At this point, the navigation stack simply needs to receive a “goal message”,

specifying a desired destination location. To do this, given GPS information, a “gps_common”

node is used, which converts the spherical projection of GPS coordinates into UTM coordinates,

which are rectangular coordinates that the navigation stack can understand.

When all of this data is fed into the navigation stack, the robot can navigate from waypoint

to waypoint while avoiding obstacles and automatically adjusting its speed. The challenge

inherent in this is combining the sensor data and tuning the navigation stack's settings to give a

balance of processing speed and accuracy (by adjusting the grid size of the costmap, making it

2D vs 3D, etc), as well as adjusting the acceleration, speed, and radius parameters of the robot

to allow it to go from point to point as quickly as possible while not coming into contact with

any obstacles.

4.6 Software Innovation

This is our first attempt at this contest and we started from scratch, with no expertise in

ROS or vision algorithms. Nonetheless, we believe that the following will prove to be

innovative about our software design when it is fully implemented (perhaps not until next

year): 1. Our use of ROS as a platform. 2. Our vision algorithms to detect white lines and

barrels. 3. Our use of a single-camera algorithm that operates over time to detect distances of

objects. 4. (Eventually, but probably not this year): Our use of multiple cameras to increase

reliability of the robot’s understanding of the world. 5. (Eventually, but probably not this year):

Our use of speed-control algorithms to trade off speed versus the uncertainty of the sensor

data.

Page 15

5 Performance analysis / testing

As of this writing, we have done very little real-world testing; we have lots to do in the

forthcoming weeks! We plan the following tests:

• Test speed and agility by running the robot via remote and autonomous control at slow

speeds (when obstacles are close by) and fast speeds (when obstacles are far away).

We expect our slow speed to be about 1 mph and our fast speed to be about 2 mph.

• Test ramp climbing ability by running the robot on the course we have set up (small

natural hills) and on a bicycle ramp (10 degree incline). We expect that the robot can

climb inclines up to 45 degrees.

• Test reaction times by running the robot on the course. We expect that we can obtain

sensor data every 50 milliseconds and react to it in real time.

• Test battery life by running the robot through the entire outdoor course that we have

prepared. We expect about 3 hours of run-time under contest conditions.

• Test distance at which obstacles are detected on our course. We expect to identify the

white lines to a distance of 30 feet. We expect to identify the barrels at a distance of

about 30 feet and to detect their distance accurately when they are within 20 feet.

• Test how the vehicle reacts to complex obstacles such as switchbacks, dead ends, etc.

by running on the course. We are unsure how well the ROS navigation will do.

• Test accuracy of arrival at navigation waypoints by running on the course. We expect

to be able to arrive to given waypoints within 1 meter.

At the oral presentation at IGVC we will supply comparison of predictions with actual data.

6 Conclusion

This is our first year in IGVC. We are still implementing ideas. We will update this report at

the oral presentation at IGVC. We think that these will prove to be winning design decisions:

• Buying the Husky A200 as our robot base. This allows us to focus on our interests –

software and sensors – instead of grappling with mechanical issues.

Page 16

• Using ROS as our platform. The learning curve is steep, but we believe that ROS will let

us focus on applying known algorithms in novel ways, instead of re-inventing the wheel.

• Our vision algorithms, especially our single-camera algorithm for distances over time.

7 References

[1] "IGVC Design Reports, 2008, Princeton University," 2008. [Online]. Available:
http://www.igvc.org/design/reports/dr218.pdf. [Accessed 8 May 2012].

[2] "Robot Operating System (ROS)," [Online]. Available: http://www.ros.org/wiki/. [Accessed 8 May
2012].

[3] W. Garage, "Willow Garage home page," [Online]. Available: http://www.willowgarage.com/.
[Accessed 8 May 2012].

[4] "Husky A200 Unmanned Ground Vehicle," [Online]. Available:
http://www.clearpathrobotics.com/husky. [Accessed 8 May 2012].

[5] "Clearpath Robotics," [Online]. Available: http://www.clearpathrobotics.com. [Accessed 8 May
2012].

[6] "Agile Software Development Processes," [Online]. Available: http://www.agile-process.org/.
[Accessed 8 May 2012].

[7] K. Schwaber and M. Beedle, Agile Software Development with Scrum, Prentice-Hall, 2001.

[8] "80/20 T-Slotted Aluminum Tube Framing," [Online]. Available: http://www.8020.net/T-Slot-1.asp.
[Accessed 8 May 2012].

[9] "Logitech HD Pro Webcam C920," [Online]. Available: http://www.logitech.com/en-us/webcam-
communications/webcams/devices/hd-pro-webcam-c920. [Accessed 8 May 2012].

[10] "BU-353-S4 Weather-proof USB CPS Receiver by GlobalSat," [Online]. Available:
http://www.usglobalsat.com/p-688-bu-353-s4.aspx#images/product/large/688.jpg.

[11] "ROS Concepts Page," [Online]. Available: http://www.ros.org/wiki/ROS/Concepts. [Accessed 8 May
2012].

[12] "Open CV Vision Library, Wiki," [Online]. Available: http://opencv.willowgarage.com/wiki/.
[Accessed 8 May 2012].

[13] "Histogram of Oriented Gradients (HOG)," [Online]. Available:
http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients. [Accessed 8 May 2012].

[14] "ROS Dynamic Window Approach (DWA) Planner," [Online]. Available:
http://www.ros.org/wiki/dwa_local_planner.

[15] "Scrum Services from Icon ATG: diagram adapted from "Agile Software Development with Scrum"
by Schwaber and Beedle," [Online]. Available:
http://www.iconatg.com/services/process/scrum.php. [Accessed 8 May 2012].

	Table of Contents
	1 Team Overview
	2 Design Process
	3 Hardware
	3.1 The Husky Robot from Clearpath Robotics
	3.2 Hardware We Added to the Basic Husky Robot
	3.3 Hardware Innovation
	3.4 Costs of Equipment

	4 Software
	4.1 Platform – Robot Operating System (ROS)
	4.2 Vision
	4.2.1 Vision for Lane Following (staying within the white lines)
	4.2.2 Vision for detecting barrels
	4.2.3 Vision for Obstacle Detection

	4.3 LIDAR
	4.4 GPS
	4.5 Navigation
	4.6 Software Innovation

	5 Performance analysis / testing
	6 Conclusion
	7 References

