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are grateful for their example of an award-winning design report. 
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1 Team Overview 

The Husky Rose team is organized via a new course offered this year at Rose-Hulman:  CSSE 

290 Software Challenges in Autonomous Vehicle Navigation.  Twenty-five students took the 

course over 3 terms, for a total of student 50 credit-hours over the year.  Six students are in the 

course for the spring term and authored this report. 

 

This is our first year in 

IGVC.  We are still 

implementing our 

ideas.  We will update 

this design report at 

the oral presentation 

at the IGVC contest. 

 

 

 

 

 

 

2 Design Process 

In the fall term, we were starting from scratch.  We knew some of the challenges and knew 

that we wanted to use the Robot Operating System (ROS) [2] platform developed by Willow 

Garage [3].  We spent the term becoming familiar with ROS and the challenges. 

In the winter term, we chose our robot:  A Husky A200 [4] that we bought from Clearpath 

Robotics [5].  Our work narrowed to more specific tasks, but we were still very much in 

“learning mode.” 

In this problem-based course, students design and develop software to solve 
challenges in navigation faced by autonomous vehicles (robots).  The problems are 
real problems faced by real robots in a real competition.  The software to be 
developed is for challenges faced by a robot that will be entered in the 2012 Ground 
Vehicles Competition (IGVC), although the software will be designed to appl 
Intelligent y to other robots as well.  Challenges include location, vision, planning and 
control: 

• Where am I, and where will I be in X seconds? 

• What obstacles are ahead of me? 

• What sensors should I use to learn the above?  How do I deal with uncertain and 
conflicting information? 

• How will I avoid the obstacles ahead of me?  Where do I want to go next? 

• At each step, what speed should I be driving, to accomplish my overall goal of 
winning the competition?  What sub-goals should I set to accomplish that overall 
goal? 

• What commands do I give to motors to accomplish what I want to do next? 

• What information do I need from sensors to accomplish what I want to do next? 

Figure 1.  A portion of the course description of CSSE 290 Software Challenges in 
Autonomous Vehicle Navigation, Rose-Hulman Institute of Technology. 
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In the spring term, we used a 

simplified version of the Agile [6] 

software development process called 

Scrum [7] in which we set out 

deliverables due each week and re-

planned each week based on what we 

did (and did not) accomplish.  The 

diagram to the right summarizes the 

Scrum development process. 

3 Hardware 

3.1 The Husky Robot from Clearpath Robotics 

Our team wanted to focus on software challenges, per the course driving the team.  For that 

reason, we bought a Husky A200 robot from Clearpath Robotics that provided a very strong, 

solid base – but only the base: wheels, motors, chassis, battery etc.  No sensors and no brain. 

• Dimensions:  About 3 feet long, 2 feet wide, 15 inches tall, with a 5 inch clearance.  It 

weighs about 100 pounds. 

• Speed:  It runs in rugged terrain (snow, etc) quite nicely, with a max speed of about 2.3 

mph.  It turns in a tight radius with a wheel base of about 2 feet. 

• Power:  Battery powered.  It runs for several hours on a charge. 

More details of the robot are at http://www.clearpathrobotics.com/husky. 

3.2 Hardware We Added to the Basic Husky Robot 

• A mounting system made from 80/20 aluminum t-slotted tube framing [8]. 

• Four cameras (mounted front and sides): Logitech HD Pro Webcam C920 [9]. 

• LIDAR:   A used LIDAR loaned to use from an alumni. 

• GPS:  A BU-353-S4 Weather-proof USB GPS Receiver by GlobalSat [10]. 

Figure 2.  The Scrum development process [15] 

http://www.clearpathrobotics.com/husky
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• Computer:  HP/Compaq Tablet computer, model TC 4400 (several years old). 

• Safety system as required for IGVC. 

Additionally, we are considering adding an electronic compass for heading information. 

3.3 Hardware Innovation 

We believe that the following will prove to be innovative about our hardware design:  An 

off-the-shelf robot to provide stable, reliable locomotion, thus letting us focus on software 

challenges.  Multiple cameras used for multiple purposes. 

3.4 Costs of Equipment 

Item Retail cost Cost to team 

Husky A200 robot, with 1 extra battery (shipped, with tax) $ 14,700 $  7,600 

Cameras (4) – Logitech HD Pro Webcam C920  $    310 $    310 

LIDAR – SICK LMS291-S14 $  5,000 $      0 

GPS – BU-354-S4 Weather-proof USB GPS Receiver. $     50 $     60 

Computer (HP/Compaq Tablet computer, model TC 4400) $  2,500         $      0 

Mounting hardware $    500 $    100 

Safety system (light, remote control, etc) $    800 $    400 

TOTAL $ 23,860 $ 8,470 

4 Software 

This section describes the software we developed for our robot.  Our development is still in 

progress – we will give a more complete report at the oral presentation at the contest. 

4.1 Platform – Robot Operating System (ROS) 

The software platform chosen for use on our robot is Robot Operating System (ROS) [2], an 

open source software framework for use with robotics.  It is a mostly self-contained system, 

which according to the ROS Wiki, provides “the services you would expect from an operating 
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system, including hardware abstraction, low-level device control, implementation of 

commonly-used functionality, message-passing between processes, and package management. 

[2]”  More simply put, it is similar to an operating system (although it has to run on a host OS; 

Ubuntu Linux is the only one officially supported), and uses a message-passing graph 

architecture to facilitate communication between various inputs, processing nodes, and 

outputs. 

A more detailed overview of ROS is as follows (most of this is summarized from the ROS 

concepts page [11] located on the ROS Wiki):  ROS has three layers of concepts and 

functionality: Filesystem Level, ROS Graph, and Community. 

The most important parts of the Filesystem Level are Packages and Stacks.  Packages are 

large units that may contain ROS nodes, ROS libraries, ROS configuration, or anything else that 

needs to go together.  Stacks are collections of related packages. An example would be the 

Clearpath Husky stack; it contains packages for Husky initialization, Husky remote 

teleoperation, and Husky simulation. 

The Graph Level of ROS is where most of the work is done. The graph level consists of 

nodes: modular processes that, like Unix processes (and that similarly adhere to the philosophy 

“do one thing, and do it well”), typically do one specific task (control GPS, transform coordinate 

frames, control LIDAR, etc).  Nodes communicate to each other by sending messages to each 

other over a routing system that utilizes named 

topics.  Nodes can either publish messages to a 

specific topic or subscribe to a topic, receiving (and 

handling) any messages that are published to it.  

Nodes may publish and subscribe to several 

different topics.  There are also services, which 

allow for synchronous communication 

(request/reply), but these are used relatively infrequently.  “Bags” are another useful part of 

the Graph Level of ROS.  They are a format for saving and replaying ROS message data, allowing 

one to work on algorithms without having to collect new data each time. 

The third level of ROS is the Community level, which consists of the online distributions and 

repositories of ROS.  Our Husky robot is currently running the 4th version of ROS, Electric Emys. 

Figure 3.  The ROS message-passing structure 
(from [11]) 
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We chose ROS due to the large amount of available software for it, the large amount of 

compatibility, and its ease of development, due to being open-source.  Our 

production/deployment system is running on Ubuntu 11.10, and our development systems are 

all running either Ubuntu 11.10 or Ubuntu 12.04.  ROS supports code written in Python and in 

C++.  Most of our high-level code is currently written in Python, with calls to libraries 

implemented in C++. 

4.2 Vision 

4.2.1 Vision for Lane Following (staying within the white lines) 

The lane following algorithm implemented by our Python code is deceptively elegant.  We 

chose to use the open source vision library OpenCV [12] because it is built into ROS and 

because, being freshman, it was a good way to be introduced to image processing. 

An image read by OpenCV is stored as a two-dimensional array of pixels, where each pixel is 

a 3-tuple (e.g. the red/green/blue characteristics of the pixel).  We realized early on that our 

system needed to process only a portion of each image, mainly just the ground. This revelation 

led to a crop method in our code. When an image is read into our code, the first process it goes 

through is the crop method which cuts off the entire top portion and leaves only the robot’s 

immediate line of vision. The crop is accomplished by a call to an OpenCV function that restricts 

the field of interest (FOI) to the fixed area of the image that is the ground.  (We know that area 

because we know how the camera is mounted, in particular, the angle at which it points toward 

the ground.) 

While working on the crop method, we had also been thinking about a way to detect lines.  

Several options presented themselves to us.  Since the lines would be white, we attempted to 

use a flood-fill operation and highlight everything white in the image.  This process was 

eventually ruled out due to the severely discordant behavior of the operation.  The flood-fill 

colored in not only the white lines, but every single white pixel in the image.  Realizing that a 

more complex process would be needed, our team began to develop new ways to detect the 

while lines.  Trawling through OpenCV’s documentation and through code for prior projects, we 

did not leave empty handed.  We realized that we needed to use the Hough Transform in order 

to draw lines onto the image.  Though the Hough function can find straight lines in an image, it 
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would not be enough to implement it directly.   After several weeks of 

experimentation, we came up with our current method to process the 

image for the Hough transform: 

1. Crop the image to get just the ground 

(no sky). 

2. The cropped image is sent to an 

OpenCV function that converts colored images to grayscale.  A purely 

black and white image gets rid of many issues and inconsistencies. 

3. The gray image is then thresholded for white colors. The method of 

black and white thresholding turns every single pixel above a given 

value (in the range 0-255) to white and every pixel below the value 

to black.  At first we used a fixed value as the threshold, but later 

we used an adaptive algorithm to choose the thresholding constant (see discussion below). 

4. The preceding steps gave us an image where the lines were clearly 

defined as collections of pure white pixels, but it did not take into 

account that there are many random appearances of white still all 

over the picture.  In order to detect the white lines properly, we 

needed to reduce the effects of the stray occurrences of white.  A simple way to reduce the 

effects was to apply a blur to the image.  We did not comprehend at the time that the blur 

would perform multiple functions.  It would reduce the effects of stray white spots around 

the picture, and it would allow the Canny Edge Detection method to work more effectively. 

5. The Canny Edge Detection method is a built-in OpenCV method that extracts the edges 

from a 2-d image.  An edge can be defined as an inherent surface marking in the image that 

reflects the geometry of the shapes, or a sharp change in color. Therefore, the Canny Edge 

Detector is able to see the sharp contrast between the white lines and the rest of the black 

areas in the image.  It would seem like edges would be easy to detect using Canny, 

however, the thresholding algorithm doesn’t isolate the line as a single object; instead, the 

line becomes a heavily concentrated collection of white pixels. Therefore, Canny cannot 

identify a single solid edge, but it detects the line as a jagged edge with many fractures and 
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intervals of blank black space. The coordinates for each pixel in the edge are recorded in the 

image. 

6. The Cannied image is finally sent to the Hough Transform 

method. This finds straight lines of a pre-set length in an 

image.  The value returned by the Hough method is an array of 

lines defined by two points on the original image.  We took the returned array from Hough 

lines and iterated through it, simultaneously drawing each line onto the original image. The 

result was the original cropped image with red computer generated lines along the white 

painted grass.  These lines are then sent to ROS to use in its navigation algorithms, as 

described later in this document. 

At this point we thought that our line following algorithm was done and we could focus on 

other aspects of the project, but we were wrong.  In attempts to test our line following 

algorithm on other test pictures, we found that our threshold did not work for images with 

differing values of brightness.  As the overall value of brightness in the image changed, our 

value to threshold needed to be changed also. Therefore, our adaptive thresholding method 

was instated to perform that operation. 

In order to find the value of brightness to threshold for in a given image, we had to find the 

overall brightness of the image. The OpenCV function calcHistogram was used to find the 

number of pixels at each level of brightness from 0 to 255 in the grayscale image.  Based on the 

skew of the histogram, we could threshold for only the brightest values (which would be 

coming from white lines).  Our thresholding operation iterates through the histogram to find 

the value of brightness with the largest number of corresponding pixels.  It then iterates 

through the rest of the histogram until it reaches a brightness at which there only about a sixth 

of those pixels.  That value of brightness is recorded as the threshold value. 

4.2.2 Vision for detecting barrels 

For our barrel detection system we were unsure of how to effectively isolate and record the 

positions of the barrels from the camera. The main reason for this was that the barrels can be 

any color, from orange to green.  As a result, we decided to break our algorithm development 

process into several phases.  The first phase was to find the barrels based on their orange and 

white alternating colors.  We do this by stepping from the bottom row of the image up to the 
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top, row by row.  We then look for a block of orange pixels in the row.  Once this is found, we 

step upwards; looking for a block of white pixels above.  Once this is found, we can safely say 

that we have found a barrel and can return its coordinates. 

The second phase was to find an algorithm to isolate a barrel based somewhat on color and 

mostly on shape. This way we can operate on any barrel regardless of color.  The algorithm we 

are using for this is the Histogram of Oriented Gradients algorithm, or HOG [13]. The HOG 

algorithm is commonly used to detect pedestrians in crosswalks.  It can successfully find people 

regardless of the color of their clothes. This algorithm shows much promise for identifying any 

and all barrels from the camera.  We are in the process of 

implementing and applying HOG to finding barrels; we will report 

more on this in the oral presentation at the contest. 

4.2.3 Vision for Obstacle Detection 

We detect obstacles, including their distance from the robot, 

using a vision algorithm that J.P. Mellor, Professor of Computer 

Science and Software Engineering, taught us.  The algorithm 

works using a single camera, mounted pointing straight away and 

somewhat toward the ground, that takes pictures over time. 

The algorithm: 

Start with a blank “stack graph” image 

and repeat the following every 10 milliseconds: 

1. Capture one line of pixels from the camera (Figure 4.)  While 

any line could work, we chose a line to have accurate distance 

information for barrels when they get within about 20 feet. 

2. Append the new line to the bottom of the stack graph image 

(Figure 5).  Thus, as this loop continues over time, the stack 

graph image shows the same line of pixels repeated over time, 

with time being the y-axis. 

3. Apply the OpenCV Canny function (as described earlier) with 

appropriate thresholds to get edges of the objects (Figure 6). 

This line of pixels 

Figure 4.  Capture one line of pixels 

Figure 5.  Append lines to the 
bottom of the stack graph image 

Figure 6.  Threshold to grayscale 

Stacks from the 
bottom, over time 
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4. In the thresholded image, the lines are edges of objects.  Lines that are near vertical are for 

objects whose edges are not changing over time – those are objects that are far away.  Lines 

that are not near vertical are for objects whose edges are changing over time – those are 

objects that are close.  The smaller the slope of the line, the closer the object.  In particular, 

the distance of the object whose edges are lines in the stack graph image is given by the 

formula (where we use the slopes near the bottom of the stack graph image): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑘 ∗ 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑖𝑡𝑠 𝑙𝑖𝑛𝑒𝑠 ∗ 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 

Why the algorithm works:  Here is an example to illustrate the algorithm.  In this example, 

the camera is moving toward the black object held in my hand, thus simulating the robot with 

its camera moving toward the black object.  The images on the left are snapshots over time of 

the actual image; the images on the right are the stack graph images developed over time. 

The line of pixels to be sampled 
repeatedly over time. 

The black object that the 
camera will move toward. At first, nothing is moving, so all the 

lines are vertical.  The lines are 
from: 
• The window 
• The black cord next to the 

window 
• The left and right edges of the 

black object in my hand 

Now the camera has moved closer 
to the black object in my hand. 
• The far-away objects have not 

changed much in the images 
sampled over time, so their lines 
remain near vertical. 

• The lines for the black object 
start to change their slopes 
toward horizontal, indicating 
that the black object is closer. 

Now the camera has moved even closer 
to the black object in my hand. 
• The far-away objects still have not 

changed much in the images sampled 
over time, so their lines remain near 
vertical. 

• The lines for the black object are even 
more toward horizontal, indicating 
that the black object is still closer. 



Page 12 
 

4.3 LIDAR 

Although we have a LIDAR mounted on the robot and we know that ROS can handle LIDAR 

data, we have not yet written code to take advantage of that.  We hope that our vision 

algorithm for detecting distances of objects will suffice; eventually we want to use that vision 

algorithm along with LIDAR data to increase reliability of our distance sensing. 

4.4 GPS 

We have written code that takes in GPS data.  The next section shows how that data will be 

used for navigating to waypoints. 

4.5 Navigation 

For navigation functionality, the ROS Navigation Stack is used.  It contains a variety of 

components that work together with other nodes as part of a larger system. The simplest 

explanation of it is that it takes sensor data and localization data, then signals the robot's 

control surfaces to take it to a given destination. 

 

Figure 7.  ROS Navigation Stack Layout 

A more complex explanation of the ROS Navigation stack is as follows: The navigation stack 

is a series of nodes that work together to give the robot navigation functionality. The internals 

of the navigation stack consist of a global costmap, a local costmap, a global planner, a local 

planner, and a recovery behaviors node. 
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Costmaps are the primary way by the robot 

knows where it can and cannot go, and what paths 

are best to take. They are built by taking in sensor 

data (whether from a laser scan [usually output by 

LIDAR] or point cloud) and using this to produce an 

occupancy grid (a 2D or 3D grid of places the robot 

can and cannot go). The “cost” part of the costmap 

is that each grid space has a “cost” associated with 

it. The robot avoids spaces with high cost 

(corresponding to high probability of collision), and 

prefers to go through spaces with low cost 

(corresponding to low or no probability of 

collision). These are calculated by giving the robot 

an “inscribed radius” (corresponding to a circle drawn inside the robot's body) and a 

“circumscribed radius” (corresponding to a circle drawn outside the robot's body). Obstacles 

that would fall within the robot's inscribed radius have a very high cost, while obstacles that fall 

within the robot's circumscribed radius have a slightly lower cost, and obstacles that fall within 

neither have practically no cost. The use of costmaps allows the ROS navigation stack to deal 

with many types of obstacles in an elegant manner. 

The second part of the navigation stack is the planner nodes. These use the costmap to 

attempt to find the “cheapest” route from the robot to a specified goal. After such a route is 

found, it sends differential and angular velocities to the robot. The algorithm used by the 

planner node is as follows (quoted from [14]): 

1. Discretely sample in the robot's control space (dx, dy, dtheta) 

2. For each sampled velocity, perform forward simulation from the robot's current state to 

predict what would happen if the sampled velocity were applied for some (short) period of 

time.  

3. Evaluate (score) each trajectory resulting from the forward simulation, using a metric that 

incorporates characteristics such as: proximity to obstacles, proximity to the goal, proximity 

to the global path, and speed. Discard illegal trajectories (those that collide with obstacles).  

4. Pick the highest-scoring trajectory and send the associated velocity to the mobile base.  

Figure 8.  A Costmap Visualization 
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5. Rinse and repeat.  

Finally, the recovery node rotates the robot 360 degrees when the robot appears to be “stuck”. 

To make the navigation stack functional, a few things are required: sensor inputs, robot 

controller output, odometry inputs, and a map server (for sharing the map with other nodes, as 

well as saving it to the disk). For sensor inputs, we are using a SICK LIDAR system mounted to 

the front of the robot, as well as a mounted camera. For odometry, the robot has an NMEA-

compatible GPS device, as well as encoders on the wheels. Given these various sources of input, 

some are combined by using an EKF filter, and they are sent to the navigation stack, enabling 

navigation. At this point, the navigation stack simply needs to receive a “goal message”, 

specifying a desired destination location. To do this, given GPS information, a “gps_common” 

node is used, which converts the spherical projection of GPS coordinates into UTM coordinates, 

which are rectangular coordinates that the navigation stack can understand. 

When all of this data is fed into the navigation stack, the robot can navigate from waypoint 

to waypoint while avoiding obstacles and automatically adjusting its speed. The challenge 

inherent in this is combining the sensor data and tuning the navigation stack's settings to give a 

balance of processing speed and accuracy (by adjusting the grid size of the costmap, making it 

2D vs 3D, etc), as well as adjusting the acceleration, speed, and radius parameters of the robot 

to allow it to go from point to point as quickly as possible while not coming into contact with 

any obstacles. 

4.6 Software Innovation 

This is our first attempt at this contest and we started from scratch, with no expertise in 

ROS or vision algorithms.  Nonetheless, we believe that the following will prove to be 

innovative about our software design when it is fully implemented (perhaps not until next 

year):  1.  Our use of ROS as a platform.  2.  Our vision algorithms to detect white lines and 

barrels.  3.  Our use of a single-camera algorithm that operates over time to detect distances of 

objects.   4. (Eventually, but probably not this year):  Our use of multiple cameras to increase 

reliability of the robot’s understanding of the world.  5. (Eventually, but probably not this year):  

Our use of speed-control algorithms to trade off speed versus the uncertainty of the sensor 

data. 
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5 Performance analysis / testing 

As of this writing, we have done very little real-world testing; we have lots to do in the 

forthcoming weeks!  We plan the following tests: 

• Test speed and agility by running the robot via remote and autonomous control at slow 

speeds (when obstacles are close by) and fast speeds (when obstacles are far away).  

We expect our slow speed to be about 1 mph and our fast speed to be about 2 mph. 

• Test ramp climbing ability by running the robot on the course we have set up (small 

natural hills) and on a bicycle ramp (10 degree incline).  We expect that the robot can 

climb inclines up to 45 degrees. 

• Test reaction times by running the robot on the course.  We expect that we can obtain 

sensor data every 50 milliseconds and react to it in real time. 

• Test battery life by running the robot through the entire outdoor course that we have 

prepared.  We expect about 3 hours of run-time under contest conditions. 

• Test distance at which obstacles are detected  on our course.  We expect to identify the 

white lines to a distance of 30 feet.  We expect to identify the barrels at a distance of 

about 30 feet and to detect their distance accurately when they are within 20 feet. 

• Test how the vehicle reacts to complex obstacles such as switchbacks, dead ends, etc. 

by running on the course.  We are unsure how well the ROS navigation will do. 

• Test accuracy of arrival at navigation waypoints by running on the course.  We expect 

to be able to arrive to given waypoints within 1 meter. 

At the oral presentation at IGVC we will supply comparison of predictions with actual data. 

6 Conclusion 

This is our first year in IGVC.  We are still implementing ideas.  We will update this report at 

the oral presentation at IGVC.  We think that these will prove to be winning design decisions: 

• Buying the Husky A200 as our robot base.  This allows us to focus on our interests – 

software and sensors – instead of grappling with mechanical issues. 
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• Using ROS as our platform.  The learning curve is steep, but we believe that ROS will let 

us focus on applying known algorithms in novel ways, instead of re-inventing the wheel. 

• Our vision algorithms, especially our single-camera algorithm for distances over time. 
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